
COURSE DESCRIPTION

10-Week course (45 days)

CNO
Programmer

LINUX

The Linux CNO Programmer Course is an 
intensive, hands-on course focusing on 
providing students with the skills and 
knowledge needed to become an advanced 
CNO programmer, with emphasis on the 
Linux environment. A CNO programmer 
develops technologies to defend, attack and 
exploit computer networks. This requires a 
deep understanding of operating systems 
and software internals, combined with 
advanced skills in C, assembly, networking, 
and reverse engineering. It also requires 
specialized knowledge and experience that 
cannot be gained through conventional 
education or programming work. Class format 
combines lecture and demonstrations with 
practical lab assignments.

Qualified Assessments
Successfully completing the full course with an 
80% average or better, students receive 
certification and are recognized as MANTECH 
Certified Advanced Cyber Programmers (CACP).

Certified Training Program
Following completion of the three modules, 
students will be capable of assisting in the CNO 
tool development life cycle.

Intensive, Hands-On Training
Emphasizes lab work over a lecture format, this 
course combines demonstrations with practical 
lab assignments, including two labs that 
function as culminating exercises.

Prerequisite: Bachelor’s degree in Computer Science 
or Computer Engineering, or equivalent experience; 
Previous programming experience in C; Experience in 
Linux Programming and x86_64 assembly.

Success requires an intense desire and capacity to 
learn; as the coursework becomes progressively 
more di�cult, so personal motivation is critical.

actp.mantech.com (443) 820-2195actp@mantech.com



The full course syllabus is available upon request

LINUX CNO PROGRAMMING

actp.mantech.com actp@mantech.com

PYTHON 3 DAYS

Introduces the Python programming language emphasizing tools 
and techniques that are useful for CNO tasks such as test 
development and vulnerability research. Topics include the Python 
interpreter, basic types and operators, statements, functions, 
modules, classes, exceptions, and more.

NETWORKS 5 DAYS

Explores IPv4 and IPv6 networks and sockets programming. Use 
Wireshark to inspect and analyze network tra�c; utilize Python to 
write client/server applications, and to develop tools for creating 
and modifying packets at the Ethernet and IP layers. Concepts 
studied include routing, network address translation, proxies, and 
packet filters. Protocols include Ethernet, IP, UDP, TCP, and HTTP.

ASSEMBLY 3 DAYS

Covers the x86 (IA-32) and x86-64 (AMD64) assembly languages. 
Learn to read, write, and debug assembly code with topics including 
registers, flags, types, operators, memory addressing, the stack, 
Linux calling conventions, and string processing instructions. 
Introduces GDB and Make to develop and debug labs.

CNO CORE CRUCIBLE 1 DAY

Applies earlier learning concepts and teaming to analyze and 
exploit a botnet to observe network tra�c, reverse engineer 
protocols, and develop tools for communicating with botnet nodes. 
Successful communication with the botnet yields additional CNO 
challenges to complete and score points in a Capture-The-Flag 
(CTF) style event.

SOFTWARE REVERSE ENGINEERING 5 DAYS

Introduces tools and techniques for analysis and exploitation of 
real-world vulnerabilities. Specifically analyzing x86 and x86-64 
executable files. Utilize Ghidra, GDB, and other tools to perform 
both static and dynamic reverse engineering. Learn how to: identify 
data types, structures, function prototypes, imports, exports, and 
other constructs and document findings; Analyze disassembled 
functions and manually produce equivalent C code; use debugger 
to analyze running programs, using techniques such as break on 
access, conditional breakpoints, and tracing.

CNO CORE MODULE1 USER MODE DEVELOPMENT MODULE

LINUX SYSTEMS PROGRAMMING 4 DAYS

Introduces the Unix programming environment that are guided and 
aided by POSIX APIs and Glibc extensions to create a variety of 
system tools. Emphasis on using development and debugging tools 
such as manpages, source headers, GNU Make, GDB, valgrind, 
Ghidra, and objdump. Comfortably develop Linux system tools 
entirely from the terminal, without need for external references.

LINUX INTERNALS 4 DAYS

Explores the internals of the user space portion of the Linux 
environment. Learn the intricacies of the Linux process model, 
develop their own shell, interact with device files, and learn advanced 
filesystem concepts. Deep dive into the ELF format; create tools to 
view/ manipulate such files, how the system performs dynamic 
loading/linking. Topics include system calls, interaction of standard 
libraries with the kernel, extraction of system information using the 
proc file system, Linux security paradigm and access control methods.

VULNERABILITY RESEARCH & EXPLOITATION 5 DAYS
Applies industry standard tools to discover hidden vulnerabilities; 
analyze; and exploit these vulnerabilities in several types of 
software. Use reverse engineering and advanced debugging 
techniques learned previously to analyze exceptional conditions to 
determine if and how the target may be exploited. Numerous 
vulnerability types are treated and explored, including use after free, 
bu�er overflows, type confusion, heap corruption, race conditions, 
uninitialized data, and more. Topics also include developing fuzzers, 
exploiting targets in the presence of stack canaries, crafting custom 
payloads, heap bu�er overflows, NX, ASLR, and other protections.

LINUX CNO USER MODE DEVELOPMENT 5 DAYS

Provides instruction on fundamental techniques and best practices 
for CNO tool development. Lab assignments focus on code 
injection, hooking, and hardening. Create tools to alter program 
execution, access sensitive memory, create new threads running 
custom payloads in existing programs, and more. Make programs 
that break out of sandboxes, avoid detection by PSPs, and are 
di�cult to reverse engineer by standard tools.

LINUX USER MODE CRUCIBLE 2 DAYS

Facilitates collaborative teams to analyze and exploit multiple bots 
over the network. Use earlier coursework to reverse engineer a 
variety of targets, develop exploits, and CNO tooling to turn 
uncovered vulnerabilities into reliable capabilities.

2

LINUX KERNEL MODE 8 DAYS

Introduces the Linux kernel architecture and fundamentals of driver development by configuring, compiling, debugging, and installing a modern 
kernel. Examines the details of kernel components such as the Memory Manager, I/O Manager, Scheduler, and Object Manager. Examines how 
to write CNO drivers for the Linux kernel. Internal workings of subsystems are unveiled, highlighting APIs and code useful for CNO 
development. Create code to perform keylogging, access, and modification of network tra�c, hijacking of interrupts, access, and modification 
of process memory, and more. An emphasis given to kernel functionality and data structures frequently exploited by CNO tools. During lab 
assignments, learn to create loadable kernel modules and modify the kernel directly to interact with major subsystems and gain familiarity with 
the inner workings. Topics include analyzing crash dumps, writing a simple driver, remote kernel debugging, IO processing, function hooking, 
synchronization, reverse engineering and exploiting a vulnerable driver, logging keystrokes, utilizing kernel callback routines, creation of covert 
channels, kernel object manipulation, and injecting code into user processes.

KERNEL MODE DEVELOPMENT MODULE3

10-Week course (45 days)

ACTP-CS-LINCNO–20250912


